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MECHANICS

For manycenturies,mate-
rials were discovered,

mined, and processedin a
largely serendipitousway.
However, the characteriza-
tion of theatom andthepro-
gress madein x-ray diffrac-
tion duringtheearly yearsof
this century starteda quest
for a theory of materialsin
terms of their atomic constituents.Later decadessaw
scientistsdevelopingmanyqualitativeandsemi-quantita-
tive modelsthat explainedthe principles of atomic cohe-
sion andthe basicpropertiesof semiconductors,metals,
andsalts. Consideringtheir simplicity, someofthemodels
weresurprisinglyaccurateandledto remarkableprogress.
However, for most materialsof current interest, the in-
teratomic interactions are intricate enough to require
fairly elaboratemodels.Fortunately,we are entering an
erain which high-performancecomputingis coming into
its own, allowing true predictive simulationsof complex
materialsto be madefrom informationon their individual
atoms.

Methods for computing the propertiesof materials
canbe divided into two classes:thosethatdo not useany
empirically or experimentallyderived quantities, and
thosethat do. The former are often called ab initio, or
first-principles methods,while the latter are called em-
pirical or semi-empirical.The ab initio methodsare par-
ticularly useful in predicting thepropertiesof new mate-
rials or newcomplexmaterialstructures,andfor predict-
ing trends across a wide range of materials. The
semi-empiricalmethods excel at interpolating and ex-
trapolatingfrom knownproperties.This article focuseson
theab initio methods,whichretain their predictivepower
evenwhen experimentaldataare scarceor unavailable.

Methodologyof ab initio calculations
As is well known, the binding in moleculesand solids is
dueto the Coulombforcesbetweenelectronsandnuclei.
The exact solution of the full, many-body Schrodinger
equationdescribinga material is, of course,impossible,
but one can make surprisingly accurateapproximations
of a system’sgroundstate,andsuch approximationsare
widely usedin condensed-matterphysics. Theseapproxi-
mations are basedon density functional theory (DFT),1
which wasdevelopedat the University of California, San
Diego, by Walter Kohn, PierreHohenberg,andLu Sham
(and for which Kohn shared the 1998 Nobel Prize in
chemistrywith John Pople,a pioneerin quantumchem-

istry.) The impact of DFT on
physics, however, was cer-
tainly not smaller than its
impact on chemistry. DFT
provesthat theground-state
energyof anM-electronsys-
temis afunction only of the
electrondensityp(r). In DFT,
theelectronsarerepresented
by one-bodywavefunctions

iQ, which satisfy the Schrodinger-like equations (in
Rydbergs):

Thepropertiesof newandartificially
structuredmaterialscanbepredictedand
explainedentirelyby computations,using

atomicnumbersasthe only input.

JerzyBernholc

KV2+VN(r)+
12p(r’)dr +/¾c[P(r)]Ja~~(r) =

i=1,. . . , M.

The first term representsthe kinetic energy;the second
is the potentialdueto all nuclei; the third is the classical
electron—electronrepulsion potential; andthe fourth, the
so-calledexchangeandcorrelationpotential, accountsfor
the Pauli exclusion principle andspin effects. The exact
form of the exchange—correlationterm is unknown,but a
local approximation, in which the exchange—correlation
potential of a homogeneouselectrongasof density p(r) is
used at each point, has proved highly successful.DFT
generallypredictslatticeconstants,atomicpositions,elas-
tic propertiesandphononfrequencieswith errors smaller
than a few percent.For example,my researchgroup at
NorthCarolinaStateUniversity computedthe radialdis-
tribution function of the then new solid C60 (seefigure 1)
six months beforethe first neutron scatteringdata, yet
theresultofthe computationagreedalmostperfectlywith
experiment.

2In fact,the theoreticalresultswereusedfor
the initial calibrationof the experimentalsetup.

Density functional theorypredictionsof cohesiveen-
ergies usedto be lessaccurate,but including terms de-
pendenton the gradientof the electrondensityhassub-
stantially improved the agreementwith experimentand

with high-level quantumchemistrycalculations.3

Large-scalecomputations
Becausethe electronic structure calculationsdescribed
aboveare computationally demanding,progressin the
field dependsin perhapsequal measureon advancesin
theoretical methodsand on advancesin computertech-
nology. For simple materials,suchassilicon with only two
atomsin a periodically repeatedunit cell, the computa-
tional effort requiredhasbecomeso modestnow that the
calculationscanbe carriedout on any contemporaryper-
sonalcomputer.However,understandingthe growth and
propertiesof silicon devicesrequirescalculatingthe char-
acteristicsof silicon surfaces.Becausesilicon is a cova-
lently bondedmaterial, the creationof a surfaceleadsto
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FIGURE 1. CALCULATED
electrondistributionin C60 at
1000 K, obtainedfrom
quantummoleculardynamics
simulations.

2Yellow, green,
andbluedenoteregionsof
successivelygreaterelectron
density.Theatomicstructure
of C

60 (background)consists
of five- andsix-membered
nngsarrangedin theshapeof
asoccerball.

broken bonds.This processis energeticallyunfavorable,
so some atoms will move to rebond, forming a recon-
structedsurfacewith less symmetry. (Seethe article by
John J. Boland and John H. Weaver, PHYsIcs TODAY,
August 1998, page34.) Dependingon the complexity of
the resulting structure,thenumberof atomsN that one
must considerin the unit cell will rangefrom 16 to 400.
Becausethesizeof thecomputationaleffortgrowsroughly
asN

2, andasymptoticallyevenasN3, it is no wonderthat
progressin computationalmaterialsphysicsis closelytied
to progressin methodologyandcomputers.

The largestab initio calculationsusually make use
of functions called “pseudopotentials,”which replace the
nuclearpotentialandthechemicallyinertcoreelectronswith
an effective potential, so that only valence electronsare
explicitly included in the calculations.(Seethearticle by
Marvin L. Cohen,PHYsIcsTODAY, July 1979,page40; also
seeref. 4.) The pseudopotentialsare derivedfrom atomic
calculationsthat useatomic numbersas the only input.
Becausepseudowavefunctionsaresmooth andnodeless,
planewavescan beusedasa basisset.This offers three
major advantages:
> Planewavesdo not dependon theatomic positions,so
using them makesthe resultsmore precise.
> The accuracyof the result is determinedby a single
parameter,the highest kinetic energy of the waves in-
cludedin the calculations.
> The kinetic energy(— V2) is diagonalin Fourier space,
whereasthe potential is diagonalin real space.

Thetransformationbetweenthetwo spacesoccursvia

the well-known fast
Fourier transform (FFT)
algorithm, which works
very quickly on vector su-
percomputersandmodern
workstations.However,be-
causethe FFT is a global
operation,its performance
slows down on massively
parallel computers.For a
largeproblem,thenumber
of plane waves can be 50
000 or more,andonemust
use iterative diagonaliza-
tion methods that mostly
work with the occupied
subspace.A particularlyef-
fective approachwas first
developedby Roberto Car
and Michele Parrinello
(then at the International
School for AdvancedStud-
ies in Trieste), who com-
bined the solution of the
electronic structure prob-
lem with molecular dy-

namicsfor the atoms.5Another approachis to solveitera-
tively for theelectronicwavefunctions,computetheforces,
and movethe atomsby a large step.6 In both casesthe
atoms follow Newton’sequationsof motionwith ab initio
interatomicforces. Thesemethodsarecalled ab initio, or
quantummolecular, dynamics.

Ab initio calculationshave long beenuseful in ex-
plaining experimentalresults and providing unique in-
sights. The recent advancesmake it possibleto predict
thepropertiesof materialswith complexatomicarrange-
ments,whosestudywould havebeenprohibitively expen-
sivejust a few yearsago. The examplesbelow illustrate
therole that accurateandquantitativelyreliablecalcula-
tions can play in modern condensedmatterphysics and
materialsscience,while alsohighlighting the advantages
of collaboration and close interaction betweentheorists
andexperimenters.

Solid C36
Someof themostexcitingnewmaterialsdiscoveredin the
last decadeare the fullerenes. Solid C

60, once it was
producedin quantity, was shown to havea number of
remarkableproperties,including superconductivityafter
intercalationwith alkalimetalatoms.In fact,its transition
temperaturesT~ are approaching40 K, secondonly to
high-Taoxides. The relativelyhigh T~ of C60 is due to the
strong electron—phononinteraction in curved fullerenes.
This has stimulatedMarvin Cohen, Steven Louie, and
their coworkersat theUniversity of California, Berkeley,
to examinefullereneswith evengreatercurvatures.

7In-
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FIGURE 2. ATOMIC STRUCTUREandsurfaceof constantchargeden-
sity of rhombohedralC36. Blue spheresrepresentcarbonatoms.The
covalent-likebondingbetweenthe C36 units is clearlyvisible. It is
predictedthat this new solid will form from individual molecules
andwill exhibit high-temperaturesuperconductivity.(From ref. 7.)

deed, they showedthat a solid formedout of C36 should
haveevenmore remarkableproperties.Unlike the mole-
cules in the C60 solid, the individual C36 molecules
crosslink (see figure 2). The cohesiveenergyof solid C36
shouldbe comparableto thatof solid C60, andthe density
of electronicstatesat theFermi level shouldalsobehigh,
as is necessaryfor high T~ accordingto theBardeen—Coo-
per—Schrieffertheory of superconductivityAnd the elec-
tron—phononcoupling? The calculationsshow that it is
evenstrongerthanin C60, so that solid C36 is anexcellent
candidatefor a superconductingsolid with a high Tc.

How aboutan experimentalconfirmation?Growinga
“desiguer” solid is not easyThe C36moleculesform in the
gasphase,but Alex Seattle’sgroup(alsoat Berkeley)was
ableto depositthem on a substrateandmeasuresomeof
their properties.Indeed,the individual moleculesturn out
to bemore reactivethan C60 moleculesandseemto form
dimersandtrimers.But asolid sampleof C36 goodenough
for the delicatemeasurementsof superconductingbehav-
ior remainsto be made.

Silicon
Let us now turn to the technologically important caseof
silicon. Although mostphysiciststhink of devicesasbeing
madeof a single crystal, polycrystalline silicon is used
extensivelyin microelectronics.Whenpolycrystallmesili-
con is doped,a siguificantnumberof dopant atoms seg-
regateto the grain boundariesand becomeelectrically
inactive. What are the driving forces for that behavior,
andcanit be prevented?

Considerthe caseof a substitutionaldonor, arsenic.
Experimentsindicate that its segregationenergyis sub-
stantial,about0.5 eV. How is thatpossible?We knowfrom
elementarychemistry that arsenichasthe propensityto
be either trivalent or pentavalent.It is the perfection of
crystalline silicon that forces it to assumea four-fold
coordinationandthusbecomea shallowdonor. However,

at a grain boundarythe coordination constraint
becomesweaker.Thereis more roomfor relaxation,
andarsenicatomscanassumetheir preferredthree-
fold coordination. Wouldn’t that behavior break
bondsandmakesomesilicon atomsveryunhappy?
Not if arsenicatomsactin pairs, effectivelybreak-
ing one bond and moving away from eachother.
Indeed,calculationsby a joint theoretical—experi-
mentalteamheadedby SokratesPantelidesofVan-
derbilt University and StephenPennycookof Oak
RidgeNational Laboratoryfound dimers andeven
chainsof dimers to be energeticallyfavorable.

8In
fact, dimer chains, shown in figure 3, were some-
what preferred.

The story doesnot end there. Two yearslater
the sameteam succeededin imaging the arsenic
atoms at a grainboundaryalbeit a more complex
boundarythan the one examinedtheoreticallyAr-
senic atoms were indeedin the dimer configura-
tions, but the dimers were isolated. Follow-up cal-
culations,althoughcarriedout for anidealizedsys-
tem, provided the explanationin terms of kinetic
constraints,the atomic geometryat the more com-
plex boundaryandentropiceffectsat thefairly high
doping temperature.

Magnetism
In theearly daysof quantummechanics,the Heis-
enberg and Ising models of maguetismprovided
important conceptualmodelsfor the entire field of
phasetransitions. However, magueticphenomena
are complex, and there are still many unsolved
problems—especiallyat the microscopiclevel—be-

cause spin effects are so subtle. Harnessingmaguetic
phenomenato thefullest extentpossibleis alsoimportant
for many applications,most notably in high-densitycom-
puter storage.

In DFT it haslong beenpossibleto carry out spin-
polarizedcalculations,treatingthespin-up andspin-down
electrons separatelyFor largely homogeneoussystems,
where there is a single preferred spin direction, that
treatmenthasworkedwell and has led to a numberof
surprises.It is now well acceptedthat maguetismis an
effect of undercoordination, in which some atoms have
fewerneighborsthanthemaximumnumberof bondsthey
can form. This is becausein a covalent bond a spin-up
electronpairs up with a spin-downelectron,leadingto no
net spin. Nevertheless,it took yearsto arrive at a satis-
factory descriptionof low-coordinatedsystems.Pioneering
calculationsby Arthur Freemanand his coworkers at
NorthwesternUniversity haveshownthat surfacelayers
canpossessmagueticmomentsenhancedfar beyondthose
in the bulk, andthat thin films of nonmagueticmetals
can becomemaguetic.

In disorderedor low-symmetry systems,evenmore
complicatedspin arrangementsarepossible,in which the
various spins are not aligued along a single preferred
direction. How do we know which arrangementis ener-
getically favored?The usual procedureis to computethe
energiesofeachcompetingstructureto identify theground
state.This canbe tedious.But thereis a betterway Ulf
von Barth and Lars Hedin at the University of Lund
devised a generalizedspin-density theory in which the
wavefunctions are two-component spinors \P(r) =

[i~
1(r),i~2(r)],where i~1 and i~2 are complexfunctions.This

approachallows the spin quantizationaxis to vary con-
tinuously with position, but the total energy needsto be
minimized without any constraintson thespin direction.
Very recently Car andhis coworkersat the Institute for
Numerical Researchin Lausanne,developeda generali-
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zation of the Car—Parrinelloprocedurethat simultane-
ously optimizes both the spin directions andthe atomic
coordinates.9Thefirst applicationsto small iron structures
found both collinear and noncollinearground states,de-
pendingon the clustersize. (Seefigure 4.) Very interest-
ingly there are energybarriers separatingthe collinear
andnoncollinearstructures.Suchbarriersdo not exist in
the classicalHeisenbergmodel of a spin system.

This examplealsohighlights theemergenceof clusters
asanewandexcitingclassof materials.Atoms in clusters
areundercoordinatedcomparedto thosein bulk, resulting
in different structures, larger magueticmoments, and
enhancedreactivity patternsin catalysis. Clustersmay
becomethebuilding blocksof a hostof newmaterials,but
their structuresandproperties,which can vary dramati-
cally with cluster size,must first be well understood.

New methods
Although materialscomputationshavealreadyadvanced
quite far, the quest for faster and bigger calculations
continuesunabated.This hasstimulatedinterestin “real
space”methods,which avoid the useof planewaves that
extendthroughoutthe entire systemby having the vast
majority of operationsbe local, in “real space.”Working

FIGURE3. GRAIN BOUNDARY. This two-dimensionalplot
showstheelectrondensity at a silicon grainboundary
saturatedby achainof arsenicatoms.Thearsenicatomsare
shownin red, the silicon atomsin blue. Thecolor scheme(in
orderof decreasingelectrondensity)is red,yellow, green,light
blue, anddeepblue. (Fromref. 8.)

in real spacehasseveraladvantages.It allows oneto use
advancedmathematicaltechniques that automatically
separatethevariouslengthscalespresentin theproblem,
substantiallyacceleratingconvergence.(Seethe box be-
low.) Also, parallelizationbecomesmuch easier,because
eachprocessorcan be assigueda given region of space.
Finally real-spacemethodsmay reducescaling of the
computationaleffort with systemsizeto the orderof the
number of atomsN ratherthanthe current0(N3).

The easiestway to exploit the multiscaleaspectsof
real-spacecalculations is by using methodsbased on
techniquesof applied mathematics:multigrids, wavelets,
andfinite elements.Of thosethree,the grid-basedmeth-
ods10haveprogressedthe mostin applications,andI will
give a few exampleshere.

For clusters,grid-basedmethodsoffer a naturalad-
vantageby making it easyto implementboundarycondi-
tions.JamesChelikowskyandhisgroupat theUniversity
ofMinnesotahavebeautifully exploitedthatadvantagein
determiningstructuralproperties,polarizabilities,optical
energygaps,andexcitationspectra.11It is much easierto
calculateopticalgapsinclustersthanin thebulk, because
in clusters evencorrectionsto density functional theory
can be determinedby computing the DFT total energy
differences.Excitation spectraare siguificantlymore dif-
ficult to work with, butagainthe real-spacemethodology
and the small size of the clusters allow simplification.
Usingexpressionsderivedfrom time-dependentlocal den-
sity theory, Chelikowskyandhis colleaguesobtainedex-
cellentresults for the spectraandpolarizabilities of so-
dium andsilicon clusters.Theagreementwith experiment
wasalmostas good asin high-quality quantumchemistry
calculations,which aremuchmore expensiveto do.

Therehavealso beenasubstantialnumberof large-
scalesolid-stateapplicationsof real-spacemethods.In my
own group,the multigrid approachis now the methodof
choice for studies of large systems.We haveused it to
determinelarge surfacereconstructionsandtheir optical
spectra,and to investigatedoping, surfacemelting, and

MultiscaleCalculationson aGrid
NA ultiscalephenomenaoccurin manyareasof physics.In
.LVleach casewe can use the sameconceptualframework:
Consideran iterative solution of a differential equationon a
grid. Although the iterationsquickly reduceerrorcomponents
thatareoscillatoryon thescaleof thegrid, thelong-wavelength
componentsconvergeonly slowly. However,theapproximate
solutioncanbetransferredto acoarsenedgrid, wheretheerror
is now oscillatory, and iteratedthere. After a convergence
slowdownis observed,a still coarsergrid is used. -

Up to this point, thecoarseningprocedureis veryreminis-
centof therenormalization-groupapproach,which focuseson
the large-scalefeaturesof theproblem.However,in the multi-
grid method,developedby themathematicianAchi Brandtof
the WeizmannInstitute, onerecursivelytransfersthe coarse-
grid solutionsbackto finer grids.18 This introduceshigh-fre-
quencyerrors,of course,but theyareeasilyremovedby afew
iterations.Thusweobtainamachine-precisionsolutionin 0(1<)
operations,whereK is thenumberof points on the finegrid.

Actualcalculationsrequirehigh accuracyandthushigh-or-

I. Global (fine) Basis

II. Medium ~ Multigrids

III. Coarse*

derdiscretizations,becausethecohesiveenergyis averysmall
fraction of the ground-stateenergy.Consider,as anexample,
theone-dimensionalPoissonequation,‘V(x) = f(x).By Taylor-
expanding(13(x), we obtainanapproximatediscretizationbased
on centralfinite differences:

[F(x~ - h) - 213(x~) + F(x~ + h)]/h2 — f(x,) + 0(h2).
However,expandingboth 13(x)andf(x), andusingthefactthat
(1Y’(x) is equal to f(x) at convergence,leadsto amoreaccurate
expressionthatstill involves only the nearestneighbors:

[l2F(x~ — h) — 2413(x,) + l2’P(x~ +

= f(x~ - h) + lQf(x~) + f(x~ + h) + 0(h4).

The short rangeof this “Mehrstellen”discretizationis particu-
larly importantfor parallelizationand0(N) methods.
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nanotubes.Quantum molecular dynamics, which must
conservetotal energyto a high degreeof accuracyworks
very well andallows for largetime steps.The advantage
of multigrids becomesparticularly apparentin systems
where convergenceis difficult to attain becauseof such
obstaclesaschargesloshingor multiple lengthscales.The
useof parallelizationhasalso beenvery effective in our
work, and the computational speedon the massively
parallelCray T3E computerhasscaledlinearly with the
numberof processors—upto 1024, themaximumnumber
to which we had access.

As an example of a specific application, consider
nanotubes,which are the strongestmaterials known.
Early classicalmoleculardynamicssimulationsindicated
that they had exceptional strength, a suggestionthat
neededto be confirmed.However,becausecurrentlymade
nanotubesare so very short, it is extremelydifficult to
measuretheir strengths.With no experimentaldataavail-
able at the time, ab initio simulationsto determinethe
mechanismsof breakageseemedto be the next best
approach.But how weretheyto beperformed,if eventhe
classicalsimulationshadproved computationallyexpen-
sive?Well, therewas atrick—namelyto simulatea tube
at ahigh fixed dilation andhigh temperature.Indeed,a
longquantummoleculardynamicscomputerrun identified
the key transformationthat leadsto either breakageor
plasticbehavior,dependingon thetemperatureandstrain
rate.’2The predictedstrengthis thehighestby far of any

FIGURE4. ATOMIC AND MAGNETIC STRUCTURESof Fe
3and

Fe,clusters.In the isomersa andc the spinsarenoncollinear.
Thecorrespondingcollinearstructuresareb andd. Magnetic
momentsareoftenmuchlargerin clustersthanin bulk, a fact
thatcouldbeimportant for applications.(From ref. 9.)

materialto date,andtherewill be no shortageof exciting
applicationswhen nanotubescan be grown in sufficient
quantity andquality

Overcomingsizelimits
We now turn to methodsthatseekto overcomethelimits
on the sizeof the systemsthat can be studiedab initio.
There is an urgent, growing need to include more and
moreatomsin simulations—newspace-agematerialsare
becomingmore complex or consist of multiple layers of
“simple” materialsthat haveto be modeledtogether.

Computer desiguersare doing their part, but the
standarddensityfunctionalmethodsdescribedabovepre-
sentaproblem.ConsiderasystemofN atoms.AsN grows,
the number of electronsit containsgrows as 0(N). In a
solid, the wavefunctionof eachelectroncan extendover
the whole solid, which meansthat computingonewave-
function will take at least 0(N) operations.Hence, the
computationsmust scaleat leastas0(N

2). Furthermore,
the individual wavefunctionsmust be orthogonalto each
other, and the processof orthogonalizationor diagonali-
zationscalesas 0(N3).

Recentlya numberof ingenious methodshavebeen
proposedfor evaluating the ground-stateenergyin 0(N)
operations.How is thatpossible?The main ideain most
of the approachesis to useabasisof localized,variation-
ally optimized functions. Each function is confined to a
givenregionof space,but thevariousconfinementregions
overlapso that thereis little loss of generalityBecause
thematrix elementsbetweenfunctionslocalizedin regions
sufficiently far awaywill vanish, the numberof non-zero
elementsbecomes0(N).Nevertheless,the resultsarestill
quite accuratewith only a few functions per atom and
with localizationregionsspanningonly afewbondlengths.
Recentreviewshavecomparedthevariousaspectsof the
proposed0(N) methods.’3

The’ DFT-based0(N) methodsare still being devel-
oped,but the localized functions are turning out to be
usefulevenapartfrom facilitatingvery-large-scalecalcu-
lations.’4The optimizationshownin figure 5, for example,
whichwasstartedfrom randomnumbers,ledto a chemi-
cally very intuitive result: afunction stronglylocalizedon
a carbon—carbonbond. That exampleprovidessomein-
sight into and justification for expectingthe eventual
successof 0(N)-like methods.

Chemistshavelong known that good approximations
ofthecohesiveenergiesofcomplicatedstructurescanoften
be obtainedby summingup the known“strengths”of the
individual bonds. Using the quantum-mechanicalbasis
functions that automaticallylocalize in bondingregions
shouldleadto accurateresultswhile keepingthenumberof
basis functionsto a minimum. The strict localizationalso
makesit moreefficient to do large-scaleparallelization,and
it is likely that DFT calculationsincluding more than a
thousandatomswill appearsoon.Such calculationsshould
havea significant impact on our understandingof compli-
catedsolids, largebiomolecules,andcomplexliqulds.

Beyonddensityfunctionaltheory
Density functional theoryhasknown drawbacks.For ex-
ample, it does not do well in describingpropertiesthat
involve excitedstates,suchasbandgapsof semiconductors
andinsulators.That limitation is not surprising though,

a

c
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becauseDFT is a variational approachfor obtainingthe
total energyof only thegroundstate.To obtaintheenergies
of the excitedstates,we needto usemany-bodytheory
and properly take into accountthe nonlocal interaction
betweenelectrons.The simplest working theory, the so-
called GW approximation, developed by Hedin and
adaptedfor usewith semiconductorsby StevenLouie and
Mark Hybertsen,” leads to bandgapsin excellentagree-
mentwith experiment.’6However, the computationalex-
penseis siguificantly greaterthan that of DFT calcula-
tions, andfurther simplifications would be desirable.

Although theDFT ground-stateenergies,andin par-
ticular thedifferencesbetweentheenergiesof alternative
ground-statestructures,arequite accurate,theerrors in
unfavorablecasesare often still too large, becausethe
exchange—correlationpotential is not known exactly If
greateraccuracyis required, a sophisticatedmany-body
treatmentis againnecessary.The mostsuccessfulmeth-
odology is basedon the quantumMonte Carlo approach,
in which the full many-electronequationsare solved by
statistical sampling.’7 Although it is substantiallymore
expensivethan density functional theory the quantum
Monte Carloapproachis likely to be themethodof choice
for high-accuracybenchmarkcalculationsin small and
medium-sizedsystems.

Futureoutlook
Progressin materialssimulationis acceleratingwhile also
becomingmoreimportant.Therapid increasein thespeed
of computersis likely to continue unabatedfor at least
the next decade,and possibly siguificantly longer. The
algorithmic progress,stimulatedby the interest and ad-
vancesin the field, is evenmore robust. As someof the
examplesaboveillustrate, it is alreadypossibleto predict
manypropertiesreliably andin somecasesthe theoretical
input hasstimulatedimportant experimentaldiscoveries.
As the capabilities for performing realistic simulations
increase,it might becomepossibleto routinely “desigu”
on a computer, at least in part, a new material with
desirable properties.The candidatematerialswould be
examinedtheoreticallyandonly the mostpromisingones
would be investigatedexperimentally

Materialsgrowth andprocessingis anotherfield that
would benefit siguificantly from reliable simulations.Al-
thoughthe industrially relevantprocessesareoftenrather

FIGURE5. OPTIMIZED ELECTRON-DENSITYFUNCTION for a
carbonnanotube,calculatedby Jean-LucFattebertandhis
coworkersat North CarolinaStateUniversity. Notethat
althoughthe allowedlocalizationregionextendsover 6 A
(shadedin blue),this functionis largelyconfinedto one
carbon-carbonbond. Theplotting planeis alongthe surfaceof
thenanotube.Thecalculationsusedanon-orthogonalorbital
multigrid generalizationof a methodproposedby Giulia Galli
andMicheleParrinello.The optimizedlocalizedfunctions
havealreadyenabledFattebertandMarcoBuongiorno
Nardelli to makeefficient ab initio calculationsof quantum
transportin nanotubes.

complicated,materialssimulationsarecoming to be rec-
oguized as an important componentof industrial R&D.
Atomistic-simulationsoftwareis beingmarketedto indus-
try, andmajorindustrial firms suchasMotorola andDow
Chemicalare building up their materials-theorydepart-
ments. The US government,which has long been the
driving force in high-performancecomputing, hasmade
materialssimulation one of its main areasof emphasis.
In view of the current interest in it and its rate of
progress, the field of materialssimulation is likely to
experiencerapidgrowth and a commensurateexpansion
in job opportunities.

Thiswork wassupportedin part by theOffice ofNavalResearch,
theNationalScienceFoundation, the NationalAeronauticsand
SpaceAdministration,andthe Departmentof Energy.
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